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Introduction | 1

“Discourse analysis [...] the analysis of language “beyond the sentence”.
This contrasts with types of analysis [...] chiefly concerned with the study of
grammar”

– Linguistic society of America [Tan12]

Figure: The spectrum of NLP from small-scale (left) to large-scale (right) structures.
Grey box contains mainly discourse-related sub-tasks.
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▶ Goal: Reveal structure underlying coherent text
▶ Structure postulated by discourse theory:

> Rhetorical Structure Theory (RST) [MT88]
> PDTB [PDL+08]

▶ RST postulates complete, hierarchical constituency trees:
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Predicting [Above-Sentence Discourse Structure] using [Distant
Supervision] from [Topic Segmentation]
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Predicting [Above-Sentence Discourse Structure] using [Distant
Supervision] from [Topic Segmentation]

* We use the term “paragraph” loosely, including to what is elsewhere called sections
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Predicting [Above-Sentence Discourse Structure] using [Distant
Supervision] from [Topic Segmentation]

▶ Variety of downstream tasks shown useful to infer discourse
> Sentiment analysis → Local structure [HC20]
> Summarization → Nuclearity [XHC21]
> What about high-level structures?
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Motivation | 3

Predicting [Above-Sentence Discourse Structure] using [Distant
Supervision] from [Topic Segmentation]

“...long stretches of running text can sensibly be broken into smaller
segments [...] motivated by their dealing with a common topic.”

– Discourse processing (Book) [Ste11]
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Topic segmentation aims to reveal the underlying document structure by
splitting documents into topical-coherent textual units.
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Assumption: Sentences belong to the same segment are supposed to be
more likely merged into a sub-tree on the relatively bottom layer of the
discourse tree.
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Supervised vs. Unsupervised?
▶ For monologue text (as the discourse treebank we test on here),

large-scale training data is available.
▶ Better and more robust performance compared to unsupervised

methods.

We use the top-performing supervised topic segmentation model
[XHCT20] to generate discourse structures.
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▶ Binary sequence labelling task
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▶ Binary sequence labelling task
▶ Basic Model: Hierarchical Bi-LSTM Network [KCM+18]
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▶ Binary sequence labelling task
▶ Basic Model: Hierarchical Bi-LSTM Network [KCM+18]
▶ Top-performing approach with coherence module [XHCT20]
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▶ 3 “natural" document levels

▶ Topic segmentation operates on sentence-level

▶ Sentence-level to paragraph-level sub-trees (S-P)

▶ Paragraph-level to document-level sub-trees (P-D)

▶ Sentence-level to document-level sub-trees (S-D)
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Dataset Wikipedia RST-DT [COM02] GUM [Zel17]

# of Docs. 20,000 385 150
# of Para./Doc. 31.1 9.99 12.3
# of Sents./Doc. 144.9 22.5 49.3

▶ Wikipedia Dataset:
> Randomly sampled from Wikipedia dump
> Same size as Wiki-Section [ASCM+19], but without domain limitation
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# of Sents./Doc. 144.9 22.5 49.3

▶ Wikipedia Dataset:
> Randomly sampled from Wikipedia dump
> Same size as Wiki-Section [ASCM+19], but without domain limitation

▶ RST-DT Treebank [COM02]:
> Largest English RST-style discourse treebank (news-domain)
> Used for training (plain data) and evaluation (tree-structures)

▶ GUM Treebank [Zel17]:
> Multi-domain RST-style discourse treebank
> Used for training (plain data) and evaluation (tree-structures)
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Model
RST-DT GUM

S-P P-D S-D S-P P-D S-D

Baselines

Random 77.11 63.90 60.20 67.53 60.96 57.99
Right-Branching 73.57 65.50 59.46 64.15 72.71 59.39
Left-Branching 72.41 64.07 58.07 62.07 54.35 51.56

Supervised RST-style Parsers

Two-StageRST-DT 90.64 68.09 72.11 74.20 63.29 63.65
Two-StageGUM 88.82 65.63 69.58 76.70 72.94 68.38
SpanBERTRST-DT 90.75 76.03 77.19 – – –

Distantly Supervised RST-style Parsers

SumCNN/DM 74.23 66.15 59.10 67.89 57.80 53.82
Two-StageMEGA-DT 85.00 65.50 66.99 73.37 69.88 64.69
TSRST-DT 84.34 62.52 65.96 72.54 67.60 62.79
TSWiki 83.43 69.78 68.13 76.98 63.53 65.84
TSWiki+RST-DT 83.84 66.54 65.84 – – –
TSWiki+GUM – – – 74.48 67.29 64.69
Ablation – TSWiki 83.51 68.61 67.47 75.94 64.71 65.38

Table: RST Parseval micro-average precision measure. Best performance per sub-table
underlined, best performance per column bold.

▶ Best baseline, supervised, distantly supervised and proposed model
on GUM. Additional results can be found in the paper.
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Table: RST Parseval micro-average precision measure. Best performance per sub-table
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▶ Closer look at under-performing P-D (red)
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Genre Right-Branching Two-Stage (GUM) TS (Wiki)

Travel guides 78.1 75.0 53.1
Biographies 75.0 78.6 78.6
Fiction 80.6 80.6 61.1
How-to guides 69.4 64.3 66.3
Academic writing 70.4 81.5 70.4
News stories 57.4 57.4 63.2
Political speeches 80.0 85.0 60.0
Textbooks 78.6 71.4 57.1
Interviews 78.8 83.3 60.6

▶ Similar domains to Wikipedia reach the best performance
▶ Right-branching structures strong baseline
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▶ Prediction (left) according to topic segment probabilities
▶ Gold-standard (right) from RST-DT corpus
▶ Showcase open problem:

> “Nested paragraphs”
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▶ Prediction (left) according to topic segment probabilities
▶ Gold-standard (right) from RST-DT corpus
▶ Showcase open problem:

> “Nested paragraphs”
> “Long-distance paragraphs”
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▶ Topic segmentation provides useful signals for high-level discourse
constituency trees

▶ Greedy top-down algorithm performs well on RST-DT and GUM
▶ Giving insights into tree structure prediction based on textual levels

▶ Investigate non-greedy tree aggregation, e.g., CKY
▶ Incorporate discourse signals into topic segmentation models
▶ Use dense representations of neural topic segmenters to infer

discourse structures with nuclearity and relation labels
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