

Diagnosing and Improving Topic Models by Analyzing Posterior Variability

Linzi Xing, Michael J. Paul University of Colorado Boulder {linzi.xing, mpaul}@colorado.edu

Introduction

Bayesian inference methods have been widely used at obtaining more robust model estimates like LDA[1]. However, little work has explored the possibility that Bayesian inference can also be used to evaluate and understand other characteristics of the topic model. We focus on the variability of posterior samples of topic parameters across Gibbs sampling process and find the fluctuation in parameters can indicate the quality, consistency of topics. When narrow down to the word level, the fluctuation of word probability

Торіс	Method	Top 10 words				
Topic 8	Mean	said ship water coast river boat sea guard island species	Table 2: Example of topic			
	Mean/SD	ship species coast water birds boat sea fish guard ships	methods, where Mean is			
	Min	ship water coast boat river sea species island ships fish	the baseline method of			
Topic 22	Mean	television network cbs nbc news tv abc million broadcast rating	using the average sample probability. Highlighted			
	Mean/SD	cbs nbc network abc rating radio television cable cnn broadcast	words indicate the words			
	Min	network television cbs nbc tv abc news broadcast rating cable	that only appear in the set for that particular			
Topic 74	Mean	house building built castle th tower buildings city hall garden	method.			
	Mean/SD	building house built tower buildings garden castle designed hall design				
	Min	building house built tower buildings garden castle hall houses site				

may improve the final outcome of topic models.

Topic-level Analysis

We newly define a metric named **topic stability** to measure the degree of a topic's parameters change during Gibbs sampling, a posterior inference algorithm.

stability(
$$\Phi_k$$
) = $\frac{1}{|\Phi_k|} \sum_{\varphi_k \in \Phi_k} sim(\varphi_k, \overline{\varphi}_k)$

After experimenting, we select **cosine similarity** as our vector similarity function *sim()* since it has better performance than other methods we consider in all cases.

Following the equation we proposed, each topic can be assigned a stability, we then try to align these stabilities with topic quality and consistency to test if it is a effective indicator of topic's quality and consistency[2]. We compare the correlation of topic stability with two other popular metrics – coherence[3] and NPMI[4].

Word-level Analysis

building house built tower buildings garden castle han houses site

	Quality		Consistency			Mean vs	Mean/SD	Mean v	s Min	Mean/SD	vs Min
					News						
Metrics	News Wik	Miki	News	Wiki	3/5	16	34	19	30	24	26
		VVINI			4/5	10	21	6	13	7	9
Stability	.248	.253	.627	.354	5/5	0	1	1	3	0	0
					Wiki						
Coherence	.198	.040	.456	.298	3/5	38	62	39	52	56	44
NPMI	.553	.462	.340	.142	4/5	16	35	17	23	23	15
					5/5	1	9	0	7	7	3
Table 3: Correlat	ion betwee	n metrics an	d topic quali	ty, consistenc	y Tab	ole 4 : Number	r of times of th	ree methods v	vin majority	vote	
Experiments							Discussion				
 Datasets: All experiments are done on two datasets respectively. News: 2,243 articles from Associated Press (50 topics) Wiki: 10,000 articles randomly picked from Wikipedia (100 topics) LDA settings: 2000 iterations(1000 burn-in iterations), 10-sample lag. 						• Topic • Topic con ma	 Topic Level: Topic stability is correlated with consistency and quality of topics rated manually. It can beat one of two topic quality ovaluation matrice 				
Topic-level Analysis: We collected quality judgments from humans by having people rate topics on a 4-point Likert scale (4-best, 1-worst) through Amazon Mechanical Turk.						by gh top	 quality evaluation metrics. Different from coherence and NPMI, topic stability doesn't use any 				

When focusing on the words within an individual topic, we also investigate the variability of posterior of individual word probability and its capability. We find that words with high posterior variance tend to be less strongly associated with the topic, like common words 'new' and 'said'. Hence, topic word list can be adjusted by variance to reorder the topic words in a better way.

We propose two methods for using the posterior variability to re-rank the top words in a certain topic.

- **Mean/SD:** dividing the mean word probability by the standard deviation across all the samples.
- **Min:** taking the lowest value $\varphi_{k\nu}$ (the word probability assigned to topic k), which is the 0th percentile of the value distribution.

_								
-	1000		1600		2000			
-	Topic 6 (News, Stability $= 0.9334$)							
-	housing	.027	store	.023	store	.023		
	stores	.021	stores	.023	stores	.022		
ble 1 : Three	store	.019	homeless	.019	homeless	.018		
ferent	homeless	.018	food	.014	food	.013		
sterior samples	home	.015	$\operatorname{christmas}$.012	$\operatorname{christmas}$.013		
two topics	food	.012	market	.011	animals	.010		
	christmas	011	alothing	008	market	000		

Baseline: coherence[3], NPMI[4]

- **Correlation with manually rated quality:** compute Spearman's rho between human ratings and three metrics on two datasets.
- **Correlation with consistency across models:** run LDA four times on each corpus and applied the up-to-one topical alignment process[2], using a cosine similarity threshold of 0.2.

Word-level Analysis:

- **Baseline:** simple mean of ϕkv across all the samples
- **Comparison on human ratings:** apply the same 4-point Likert scale on topics before and after adjusting and compute the average scores.
- **Comparison on human voting:** pair topics from three different methods and require human to compare and pick the better one, counting the method which wins the majority vote.

information about words in a certain topic.

Word Level:

 Variability of words assigned to certain topics is used to adjust the topic word lists by Mean/SD and Min we proposed. Experiments show people prefer our modification more.

Future Work:

• In future, it's worthy to explore the feature of variability at document level[14].

References

- 1. Blei, D. M.; Ng, A. Y.; and Jordan, M. I. 2003. Latent Dirichlet allocation. Journal of Machine Learning Research3:9931022.
- Chuang, J.; Roberts, M. E.; Stewart, B. M.; Weiss, R.; Tingley, D.; Grimmer, J.; and Heer., J. 2015. TopicCheck: Interactive alignment for assessing topic model stability. In HLT-NAACL, 175–184.
- Mimno, D., and Blei, D. 2011. Bayesian checking for topic models. In Proceedings of the Conference on Empirical Methods in Natural Language Processing, 227–237.
- Lau, J. H.; Newman, D.; and Baldwin., T. 2014. Machine reading tea leaves: Automatically evaluating topic coherence and topic model quality. In Proceedings of EACL 2014, 530–539.