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Abstract

Recent neural supervised topic segmentation
models achieve distinguished superior effec-
tiveness over unsupervised methods, with the
availability of large-scale training corpora sam-
pled from Wikipedia. These models may, how-
ever, suffer from limited robustness and trans-
ferability caused by exploiting simple linguis-
tic cues for prediction, but overlooking more
important inter-sentential topical consistency.
To address this issue, we present a discourse-
aware neural topic segmentation model with
the injection of above-sentence discourse de-
pendency structures to encourage the model
make topic boundary prediction based more
on the topical consistency between sentences.
Our empirical study on English evaluation
datasets shows that injecting above-sentence
discourse structures to a neural topic seg-
menter with our proposed strategy can sub-
stantially improve its performances on intra-
domain and out-of-domain data, with little in-
crease of model’s complexity.

1 Introduction

Topic segmentation is a fundamental NLP task with
the goal to separate textual documents into coher-
ent segments (consisting of one or more sentences),
following the document’s underlying topical struc-
ture. The structural knowledge obtained from topic
segmentation has been shown to play a vital role in
key NLP downstream tasks, such as document sum-
marization (Mitra et al., 1997; Riedl and Biemann,
2012; Xiao and Carenini, 2019), question answer-
ing (Oh et al., 2007; Diefenbach et al., 2018) and
dialogue modeling (Xu et al., 2021; Zhang et al.,
2020). The aim of topic segmentation makes it
tightly connected to related research areas aiming
to understand the latent structure of long and poten-
tially complex text. Specifically, understanding the
semantic and pragmatic underpinnings of a docu-
ment can arguably support the task of separating
continuous text into topical segments. To this end,

Figure 1: An example article about Cholinergic Ur-
ticaria (CU) sampled from the en_disease portion of
Wiki-Section dataset (Arnold et al., 2019). Left: dis-
course dependency structure predicted by the Sent-First
discourse parser (Zhou and Feng, 2022).

discourse analysis and discourse parsing provide
the means to understand and infer the semantic and
pragmatic relationships underlying complete docu-
ments, well aligned with the local text coherence
and highly correlated to the inter-sentential topical
consistency, as shown in Louis and Nenkova (2012)
and Muangkammuen et al. (2020). With a variety
of linguistic theories proposed in the past, such as
the Rhetorical Structure Theory (RST) (Mann and
Thompson, 1988), the lexicalized discourse frame-
work (Webber et al., 2003a) (underlying PDTB),
and the Segmented Discourse Representation The-
ory (SDRT) (Asher, 1993; Asher et al., 2003), we
follow the RST framework in this work (1) as we
focus on monologue text (as compared to dialogue
frameworks, such as SDRT) and (2) since RST pos-
tulates complete discourse trees spanning whole
documents, directly aligned with the topical struc-
ture of complete documents (Huber et al., 2021).
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We further motivate the synergistic relationship
between topic segmentation and discourse analy-
sis/parsing in Figure 1, showing anecdotal evidence
of the alignment between the document’s topical
structure and the respective RST-style discourse
dependency graph. Starting from a sequence of
sentences, the task of topic segmentation addresses
the problem of splitting the given Wikipedia article
into an ordered set of topical-coherent fragments
(here: T1, T2 and T3) by predicting topical bound-
aries. As shown in the example, the document
discourse tree is indicative of the topical structure
of the document, as discourse dependencies occur
considerably more often within a topic segment
than across topic segments.

Given significant influence on a variety of real-
world tasks, topic segmentation is an active re-
search area in the field of NLP. As such, modern,
neural methods for monologue topic segmentation
are proposed by formulating the task as a sentence-
level sequence labeling problem, trained and eval-
uated on the large-scale Wikipedia dataset (Xing
et al., 2020; Glavas and Somasundaran, 2020; Bar-
row et al., 2020; Lo et al., 2021). These Wikipedia
articles are well-suited for the task of topic seg-
mentation, providing natural section marks which
can be reasonably used as ground-truth segment
boundaries (Koshorek et al., 2018; Arnold et al.,
2019), superseding previously proposed unsuper-
vised methods (Hearst, 1997; Galley et al., 2003;
Eisenstein and Barzilay, 2008; Song et al., 2016).
Despite the significant improvements achieved by
neural supervised topic segmentation models, it re-
mains unclear if these topic segmenters effectively
learn to cluster sentences into topical-coherent
pieces based on the (document-level) topical con-
sistency, or solely exploit superficial patterns (e.g.,
simple linguistic cues) in the training domain.

To address this challenge, in this paper, we pro-
pose a more discourse-aware neural topic segmen-
tation model. We thereby inject above-sentence dis-
course structures into basic topic segmenter to en-
courage the model to base its topic boundary predic-
tion more explicitly on the topical consistency be-
tween sentences. More specifically, we propose to
exploit a discourse dependency parser pre-trained
on out-of-domain data to induce inter-sentential dis-
course dependency trees. Subsequently, we convert
the dependency tree into a directed discourse graph
with sentences as nodes and discourse dependen-
cies as edges. With the generated discourse graph, a

Graph Attention Network (GAT) (Veličković et al.,
2018) is used to encode sentences as discourse-
contextualized representations by aggregating in-
formation from neighboring sentence nodes in the
graph. Finally, the discourse-infused sentence rep-
resentations are concatenated with standard encod-
ings for segment boundary prediction.

In our empirical study conducted on English
evaluation datasets, we show that: (i) Injecting
discourse structures can substantially improve the
performance of the basic neural topic segmentation
model on three datasets. (ii) Our novel, discourse-
enhanced topic segmenter is more robust compared
to the basic neural model in settings that require
domain transfer, showing superior performance on
four challenging real-world test sets, to confirm the
improved domain-independence. (iii) Even if our
proposal has inferior accuracy against a state-of-
the-art segmenter sharing the same basic architec-
ture, it does achieve significantly better efficiency
assessed by model’s parameter size and speeds for
learning and inference, which makes it potentially
more favorable in real-world use.

2 Related Work

Topic Segmentation aims to reveal important
aspects of the semantic structure of a document
by splitting a sequence of sentences into topic-
coherent textual units. Typically, computational
topic segmentation models can be broadly sepa-
rated into supervised and unsupervised approaches.
Early topic segmentation methods usually fall into
the category of unsupervised approaches, mainly
due to the prevalent data sparsity issue at the time.
Based on predicting the coherence between sen-
tences through shallow (surface-level) features, un-
supervised models reach a limited understanding
of the contextualized structure of documents by
merely relying on easy-to-extract but barely effec-
tive features for the similarity measurement be-
tween sentences (i.e., the degree of token overlap
between two sentences) (Hearst, 1997; Eisenstein
and Barzilay, 2008). Improving on the unsuper-
vised topic segmentation paradigm, researchers
started to address this issue by introducing pre-
trained neural language models (LMs), trained on
massive dataset (Xu et al., 2021; Solbiati et al.,
2021; Xing and Carenini, 2021). Some works show
that the signal captured in pre-trained LMs (e.g.,
BERT (Devlin et al., 2019)) are more indicative
of topic relevance between sentences than early



surface-level features. However, these proposed
strategies of integrating BERT into the topic seg-
mentation framework solely exploit BERT to in-
duce dense encodings and further compute recip-
rocal sentence similarities. While this constitues a
reasonable first step, the considerable gap between
the training objective of LMs and topic segmenta-
tion task requires further efforts along this line of
work (Sun et al., 2022).

More recently, the data sparsity issue has been al-
leviated by the proposal of large-scale corpora sam-
pled from Wikipedia (e.g., Wiki-727k (Koshorek
et al., 2018) and Wiki-Section (Arnold et al.,
2019)), in which well-structured articles with their
section marks are used as gold labels for segment
boundaries. As a result, neural supervised topic seg-
menters started to gain attention by reaching greater
effectiveness and efficiency compared to previously
proposed unsupervised approaches. These super-
vised topic segmenters typically follow a common
strategy which formulates the task as a sentence-
level sequence labeling problem. More specifically,
by assigning binary labels to each sentence, mod-
els infer the likelihood of a sentence to be a topic
segment boundary (Koshorek et al., 2018; Arnold
et al., 2019; Barrow et al., 2020; Lo et al., 2021).
However, we believe that current models, besides
reaching promising performance, potentially favour
simple linguistic cues over effective measurements
for semantic cohesion, restricting their application
to narrow domains. Some recent works have at-
tempted to address this limitation via explicitly
integrating coherence modeling components into
segmenters (Xing et al., 2020; Glavas and Somasun-
daran, 2020). However, compared to our objective
in this work, these proposed coherence modeling
strategies are either (i) only taking two adjacent sen-
tences into account, limiting the additional module
to extremely local contexts, or (ii) discriminating
real documents from artificially “incoherent" texts,
resulting in implicit and synthetic negative train-
ing samples and heavy parameter size caused by
modeling multiple tasks simultaneously.

In contrast, we propose an effective method to in-
tegrate the document discourse (dependency) struc-
ture into neural topic segmentation frameworks, fol-
lowing the intuition that above-sentence discourse
structure are indicative of text coherence and top-
ical consistency, providing a more global and in-
terpretable source of information for better topic
transition prediction.

Discourse Analysis and Parsing analyze and
generalize the underlying semantic and pragmatic
structure of a coherence document (called a dis-
course). As an important upstream task in the
field of NLP, discourse analysis proposes elaborate
frameworks and theories to describe the textual or-
ganization of a document. To this end, a variety
of popular discourse theories proposed in the past,
such as (besides others) the Rhetorical Structure
Theory (RST) (Mann and Thompson, 1988) and
the lexicalized discourse framework (Webber et al.,
2003b) for monologues as well as the Segmented
Discourse Representation Theory (SDRT) (Asher,
1993; Asher et al., 2003) for dialogues. Among
these theories, the RST discourse theory postulates
a single, complete discourse tree for monologue
documents, while the lexicalized discourse frame-
work only focuses on local discourse connectives
within and between adjacent sentences. Focusing
on the connection between discourse information
and topic segmentation, we employ the RST dis-
course theory in this work, most aligned with the
requirement to capture topical coherence.

Building on human annotated discourse tree-
banks, a mix of traditional and neural discourse
parsers have been proposed over the last decades,
with traditional approaches mainly exploiting
surface-level features through Support-Vector Ma-
chines (SVMs) (Hernault et al., 2010; Ji and Eisen-
stein, 2014; Wang et al., 2017) or Conditional Ran-
dom Fields (CRFs) (Joty et al., 2015; Feng and
Hirst, 2014). On the other hand, neural models
achieve similar or superior results on RST dis-
course parsing, with models using either custom
architectures (Yu et al., 2018; Liu and Lapata, 2018)
or pre-trained LMs (e.g. BERT (Zhou and Feng,
2022), RoBERTa (Guz et al., 2020), SpanBERT
(Guz and Carenini, 2020)). In this work, we gener-
ate discourse dependency trees from a BERT-based
neural dependency parser proposed in Zhou and
Feng (2022), since: (i) The parser follows the in-
tuition that information, and hence structures, in
sentences are oftentimes “self-contained”. There-
fore, it predicts the interactions between EDUs of
the same sentence in a first stage and subsequently
predicts the inter-sentential discourse structures,
which aligns well with our objective of sentence-
level topic segmenation. (ii) The parser by Zhou
and Feng (2022) makes direct prediction of depen-
dency discourse structures, alleviating the potential
error caused by converting constituency structures



Figure 2: The overall architecture of our discourse-infused topic segmentation model.

into their respective dependency trees.

3 Methodology

As shown in Figure 2, our proposed discourse-
aware neural topic segmentation model comprises
two components: the Hierarchical Topic Segmenter
and Discourse Graph Modeling, highlighted in
green and red respectively. Discourse Graph Mod-
eling further comprises of a Discourse Graph Con-
struction and Graph Modeling component.

3.1 Basic Model: Hierarchical Topic
Segmenter

The basic architecture of our proposal is adopted
from the basic model in Xing et al. (2020), con-
sisting of two hierarchical layers: First, a sentence
encoder contextualizes individual sentences, fol-
lowed by the second layer, conditioning sentences
on the complete document. Following the settings
in Xing et al. (2020), we adopt the attention BiL-
STM architecture1 for each layer and enhance the
encodings with pre-trained BERT embeddings. For-
mally, given a document D as a sequence of n sen-
tences, the sentence encoder (bottom component
in Figure 2) yields the embedding for each indi-
vidual sentence. Based on the obtained encodings,
the document-level contextualization layer returns

1We also considered Transformer as the backbone of con-
textualized encoder, but eventually chose BiLSTM for its
superior performance.

an ordered set of hidden states H = {h1, ...,hn}.
Next, a simple multilayer perceptron (MLP) with
a final softmax activation serves as a binary topic
boundary predictor based on a threshold τ , tuned
on the validation set. During training, we optimize
the model in accordance to the cross-entropy loss,
while at inference time, every sentence (except the
last sentence2) with a probability≥ τ is considered
as the end of a segment.

3.2 Discourse Graph Modeling

Our goal is to inject inter-sentential discourse de-
pendency structures into the task of topic segmen-
tation. We believe that the additional, structural
information is thereby well aligned with the topi-
cal consistency between sentences, hence, suited
to guide the prediction of topic transitions. To
integrate the discourse information into the basic
model described in section 3.1, we first generate an
above-sentence discourse dependency tree TD for
the document. Specifically, we utilize the discourse
dependency parsing model proposed in Zhou and
Feng (2022), reaching state-of-the-art performance
for discourse tree construction and relation type
identification in multiple language settings. The
“Sent-First” parser (Zhou and Feng, 2022) further
fits the aim of our proposal due to its two-staged
approach, first generating discourse trees within

2We remove the last sentence from the sequence for pre-
diction since it is per definition the end of the last segment.



Treebank # of doc # sent/doc # edu/doc
RST-DT 385 22.5 56.6
GUM 150 49.3 114.2
SciDTB 1,355 5.3 14.1
COVID19-DTB 300 7.8 20.0

Table 1: Key dataset statistics of the discourse
treebanks used for retraining the Sent-First discourse
parser (Zhou and Feng, 2022).

sentences and subsequently combining sentence-
level sub-trees. This hard constraint allows us to
exclusively obtain above-sentence discourse struc-
tures, avoiding potentially leaky sub-trees (Joty
et al., 2015). Regarding the discourse relations
attached to every head-dependent pair (discourse
dependency), we follow the observation in Xu et al.
(2020), stating that the agreement between the type
of rhetorical relation is usually lower and more am-
biguous, to leave them for future work to avoid
error propagation.

In contrast to the original proposal in Zhou and
Feng (2022), training and testing their dependency
discourse parser on one corpus (i.e., SciDTB (Yang
and Li, 2018)), we believe that a mixture of several
diverse and publicly available discourse treebanks
with different document lengths and domains can
increase the parser’s robustness on new and un-
seen genres. Therefore, we retrain the parser on a
mixture of RST-DT3 (Carlson et al., 2002), GUM4

(Zeldes, 2017), SciDTB5 (Yang and Li, 2018) and
COVID19-DTB6 (Nishida and Matsumoto, 2022).
More specifically, we combine those discourse
treebanks and randomly split the aggregated cor-
pus into 80% training, 10% validation, 10% test
data. The parser retrained on our combined training
portion achieves an Unlabeled Attachment Score
(UAS) of 58.6 on the test portion. We show addi-
tional key dataset statistics for each treebank used
in this paper in Table 1.

After training the discourse parser to infer a dis-
course dependency tree TD for document D, we
convert the tree structure into a discourse graph
GD (as a binary matrix). Formally, we initial-
ize the graph GD as a n × n identity matrix
GD = In,n, connecting every node to itself. After-
wards, we fill in the remaining cells by assigning

3catalog.ldc.upenn.edu/LDC2002T07
4corpling.uis.georgetown.edu/gum
5https://github.com/PKUTANGENT/SciDTB
6https://github.com/norikinishida/

biomedical-discourse-treebanks

GD[i][j] = 1 iff ∃ TD(i → j), with i, j indexing
the head and dependant sentences in the document,
respectively. Using the binary matrix representa-
tion of GD, we apply the multi-layer Graph At-
tention Network (GAT) (Veličković et al., 2018)
to update sentence encodings following the dis-
course graph. More specifically, with the discourse
graph matrix GD and the contextualized represen-
tations H = {h1, ...,hn} described in section 3.1,
within each graph attentional layer, we perform
self-attention on the sentence nodes. Taking the
lth layer as an example, we compute the attention
coefficient αi,j between sentence nodes i, j as:

αl
ij = softmax(elij) =

exp(elij)∑
k∈Ni

exp(elik)
, (1)

elij = LeakyReLU(aT
l [Wlg

l
i||Wlg

l
j ]) (2)

where Wl and al are learnable parameters for layer
l and T is the transposition operation. Ni denotes
the direct neighborhood of node i in the graph
(GD[i][·] = 1). As the node representation input of
the first GAT layer (l = 0), g0

i = hi ∈ H . Once
attention coefficients are obtained, we compute the
intermediate node representation zl

i for sentence
node i at layer l by aggregating information from
neighboring nodes as:

zl
i =

∑
j∈Ni

αl
ijWlg

l
j (3)

Following the step in Huang et al. (2020), we com-
bine the intermediate node representation zl

i with
the input of this layer gl

i to get the updated node
representation gl+1

i as the input for the next layer:

gl+1
i = ELU(gl

i + zl
i) (4)

where ELU denotes an exponential linear unit
(Clevert et al., 2016). With the output gi from
the last layer of GAT, we concatenate it together
with hi and further feed [hi; gi] into the predictor
layer for segment boundary prediction.

4 Experiments

In order to quantitatively evaluate the effectiveness,
generality and efficiency of our proposal, we con-
duct three sets of experiments to compare our topic
segmentation approach against a variety of base-
lines and previous models. Namely, we assess the
performance of our model in regards to the Intra-
Domain Segment Inference Performance, Domain
Transfer Segment Inference Performance, and con-
duct an additional Efficiency Analysis.

catalog.ldc.upenn.edu/LDC2002T07
corpling.uis.georgetown.edu/gum
https://github.com/PKUTANGENT/SciDTB
https://github.com/norikinishida/biomedical-discourse-treebanks
https://github.com/norikinishida/biomedical-discourse-treebanks


Dataset # of doc # sent/seg # seg/doc
CHOI 920 7.4 10.0
RULES 4,461 7.4 16.0
SECTION 21,376 7.2 7.9

Table 2: Statistics of the datasets used in intra-domain
experiments.

4.1 Datasets

4.1.1 Intra-Domain Datasets

For the set of intra-domain segment inference ex-
periments, we train and test models within the same
domain (here: on the same corpus). We thereby
choose three diverse corpora (see Table 2 for more
details) for the intra-domain evaluation:

Choi (Choi, 2000). This corpus consists of 920
articles artificially generated by randomly combin-
ing passages from the Brown corpus. The data-
points in this dataset are not human written, leading
us to solely use this corpus for a preliminary perfor-
mance assessment for topic segmentation models
in a 80% (train)/10%(dev)/10%(test) data-split.

Rules (Bertrand et al., 2018). This corpus con-
sists of 4,461 documents about regulation discus-
sion published in the Federal Register7 by U.S. fed-
eral agencies. Since each paragraph is about one
particular regulation and all regulations covered
by one document are under the same category, we
deem it as a reasonably coherent data source for
topic segmentation evaluation with the paragraph
breaks as ground-truth segment boundaries. We
split this dataset into training, validation and test
sets with the default 80%, 10%, 10% data-split.

Wiki-Section (Section) (Arnold et al., 2019).
This corpus originally contains Wikipedia articles
in both English and German. The English portion
of the dataset, which we use for our intra-domain
experiment, consists of around 3.6k articles about
diseases and 19.5k articles about cities around the
world. After the step of filtering out problematic
samples with incorrect sentence segmentation de-
tected by mismatched counts between sentences
and labels, the resulted dataset covers 21,376 arti-
cles with the highest-level section marks as ground-
truth segment boundaries. We follow the setting
in Arnold et al. (2019) by splitting the dataset into
70% training, 10% validation and 20% test data.

7https://www.govinfo.gov/

Dataset # of doc # sent/seg # seg/doc
WIKI-50 50 13.6 3.5
Cities 100 5.2 12.2
Elements 118 3.3 6.8
Clinical 227 28.0 5.0

Table 3: Statistics of the datasets used in domain trans-
fer experiments.

4.1.2 Domain Transfer Datasets

To better evaluate models’ robustness in cases
where a domain-shift is present (called “domain
transfer segment inference”), we apply the topic
segmenters trained on Wiki-Section to four small
corpora heavily deviating from the training corpus
(see Table 3 for more details):

Wiki-50 (Koshorek et al., 2018) consists of 50
Wikipedia articles randomly sampled from the lat-
est English Wikipedia dump. There is no overlap
between this dataset and Wiki-Section.

Cities (Chen et al., 2009) consists of 100
Wikipedia articles about cities. There is no overlap
between this dataset and Wiki-Section, even the
theme of this dataset is close to the portion of city
articles in Wiki-Section.

Elements (Chen et al., 2009) consists of 118
Wikipedia articles on chemical elements.

Clinical (Malioutov and Barzilay, 2006) consists
of 227 chapters in a clinical book. The subsection
marks within each chapter are deemed as ground-
truth segment boundaries.

4.2 Experimental Design

Baselines: We directly compare our proposed
discourse-aware topic segmentation model (called
Basic Model + Discourse) with the following un-
supervised and supervised baselines:

- BayesSeg (Eisenstein and Barzilay, 2008): This
unsupervised method makes segmentation predic-
tion by situating the lexical cohesion of text in a
Bayesian framework. A text span produced by a
distinct lexical distribution is recognized as a co-
herent topic segment.

- GraphSeg (Glavaš et al., 2016): This unsuper-
vised method derives semantically coherent seg-
ments through reasoning on a semantic relatedness
graph construed from greedy lemma alignment.

- TextSeg (Koshorek et al., 2018): This supervised
neural topic segmenter adopts a hierarchical neural

https://www.govinfo.gov/


sequence labeling framework with BiLSTM as the
main architecture of each layer. The basic model
used in our paper (described in section 3.1) is an
effective extension of this approach.

- Sector (Arnold et al., 2019): This is a supervised
neural topic segmenter extended from TextSeg by
adding an auxiliary layer for sentence topic label
prediction. The learned intermediate topic embed-
dings for sentences are directly utilized for segment
boundary inference.

- Transformer (Glavas and Somasundaran, 2020):
This is a supervised neural topic segmenter consist-
ing of two hierarchically connected Transformer
networks for sentence encoding and sentence con-
textualization respectively.

- Basic Model + Context (Xing et al., 2020): This
is a top-performing neural topic segmenter which
shares the same basic architecture with our pro-
posal. The approach improves the context mod-
eling capacity of the plain basic model by adding
an auxiliary coherence prediction module and re-
stricted self-attention.

Evaluation Metrics: We use the Pk error score8

(Beeferman et al., 1999) for our intra-domain and
domain transfer segment inference evaluations.
The metric thereby simply measures the probability
that a pair of sentences located at two ends of a k-
sized sliding window in a document are incorrectly
identified as belonging to the same segment or not.
k is determined as half of the average true segment
size of the document. Since it is a penalty met-
ric, lower values indicates better performance. We
further quantitatively analyze models’ efficiency
according to two aspects: Model size and model
speed, evaluating the count of learnable parameters
and batches/documents processed per second dur-
ing training/inference, besides Pk measurement.

Implementation Details: For the hierarchical
topic segmenter (our basic model), we adopt
the default setting in Xing et al. (2020), with
GoogleNews word2vec (d = 300) as initial word
embeddings and the contextualized representa-
tion of special token [CLS] (d = 768) from
bert-base-uncased as initial sentence em-
beddings. All BiLSTM layers have the hidden
state size = 256. For the discourse graph model

8We also considered windiff (Pevzner and Hearst, 2002)
as another evaluation metric. Since it was highly correlated
with Pk, we omit it and only present performance by Pk to
better compare with results reported in previous works.

Dataset Choi Rules Section RSTDT
Random 49.4 50.6 51.3 40.5
BayesSeg 20.8 41.5 39.5 37.5
GraphSeg 6.6 39.3 44.9 58.7
TextSeg 1.0 7.7 12.6 26.9
Sector – – 12.7 –
Transformer 4.8 9.6 13.6 –
Basic Model 0.81 7.0 11.3 26.9
+Context 0.54 5.8 9.7 25.4
+Discourse 0.59 6.1 10.2 24.8

Table 4: Pk (↓) error score on three corpora for intra-
domain experiment. Results in bold and underlined in-
dicates the best and second best performance across all
comparisons. The row in purple is the results achieved
by our proposal. The column in green is the results
for RSTDT paragraph break prediction with gold dis-
course structures integrated.

component, the number of GAT layers is set to 2
through validation and the number of heads is set to
4 as in (Veličković et al., 2018). The input and out-
put dimensions of each layer = 256. Training uses
Adam with lr = 1e−3 and batch size = 8. Early
stopping is applied within 10 epoches of model
training and the boundary prediction threshold τ is
tuned over the validation set of each corpus we use
for intra-domain model evaluation.

4.3 Intra-Domain Segment Inference

We report our results of the intra-domain segment
inference on the Choi, Rules and Wiki-Section
datasets in Table 4. For better performance compar-
ison, the table is subdivided into three sub-tables:
random baseline, previously proposed approaches
and models build on top of the basic model we
use. We observe that the basic model without any
additinal components already outperforms alterna-
tive supervised and unsupervised segmenters. With
the above-sentence discourse dependency informa-
tion injected, as proposed in this paper, the method
(named +Discourse) further improves the perfor-
mance by a notable margin across all three corpora.
We further find that our proposed approach does
not achieve superior performances compared to
the basic model enhanced with the context model-
ing strategy (+Context) in Xing et al. (2020). We
believe that a possible explanation for this under-
performance could be the upstream parsing error
of the discourse dependency parser applied out-of-
domain, oftentimes severly impairing the parsing
performance (Huber and Carenini, 2019). There-
fore, we conduct an additional experiment on RST-



Dataset Wiki-50 Cities Elements Clinical
Random 52.7 47.1 50.1 44.1
BayesSeg 49.2 36.2 35.6 57.2
GraphSeg 63.6 40.0 49.1 64.6
TextSeg 28.5 19.8 43.9 36.6
Sector 28.6 33.4 42.8 36.9
Transformer 29.3 20.2 45.2 35.6
Basic Model 28.7 17.9 43.5 33.8
+Context 26.8 16.1 39.4 30.5
+Discourse 26.8 16.9 41.1 31.8

Table 5: Pk (↓) error score on four test corpora
for domain transfer experiment. Results in bold and
underlined indicates the best and second best perfor-
mance across all comparisons. The row highlighted in
purple is the results achieved by our proposal.

DT due to the availability of gold discourse struc-
tures annotated by human for this corpus. With no
human-annotated topic segment boundaries at hand,
we use paragraph breaks contained in RST-DT ar-
ticles as the ground-truth for training and testing
of topic segmentation models. Our results in Ta-
ble 4 show that the quality of discourse structure is
positively correlated with enlarged improvements
achieved by our proposal. In this case, the up-
per bound achieved by integrating gold discourse
structures can even outperform the basic model
enhanced by context modeling (+Context).

4.4 Domain Transfer Segment Inference

Table 5 presents the performance of simple base-
lines, previously proposed models and our new
approach on the domain transfer task. Similar
to the intra-domain segment inference, the Basic
Model+Context approach still achieves the best
performance across all testing domains except El-
ements, in which the unsupervised BayesSeg per-
forms superior. However, our +Discourse strategy
still leads to improvement over the basic model,
and achieves comparable performance to the best
model (+Context) on Wiki-50 and Cities. We be-
lieve that it gives evidence that injecting discourse
dependency structures has potential to enhance the
generality of topic segmentation models.

4.5 Efficiency Analysis

Table 6 compares the efficiency of the top two
models, comparing our proposed approach (Basic
Model+Discourse) against Basic Model+Context.
The experiments for these systems were carried
out on a Nvidia Telsa V100 16G GPU card. We
observe that our strategy of injecting discourse de-

# Params ↓ T-Speed ↑ I-Speed ↑
Basic Model 4.82M 6.90 35.58
+Context 10.93M 1.49 19.23
+Discourse 7.97M 5.44 32.85

Table 6: The efficiency comparison between our pro-
posal and the method proposed in Xing et al. (2020) on
the Wiki-Section corpus. These two models share the
same basic segmentation framework. T-Speed refers
the training speed as number of batches processed per
second during training stage. I-Speed refers the infer-
ence speed as number of documents processed per sec-
ond during inference stage.

pendency structures can improve model’s perfor-
mance on intra-domain and domain transfer setting,
but with less increase of model size and loss of
speed compared to +Context. More specifically,
adding our discourse graph modeling component
on top of the basic model introduces 65% more
learnable parameters while the context modeling
components in Xing et al. (2020) cause a 127%
parameter increasing. On the other hand, discourse
graph modeling slightly slows down the speed of
model training and inference by 21% and 7.7%
respectively, while making more complex context
modeling significantly slows down the speed by
78% and 46%. Together with the previous results
about model’s effectiveness, we can see that our
proposed system would be a better option in practi-
cal settings where efficiency is critical.

Additionally, we conduct the same set of exper-
iments for the model with both context modeling
module and our proposed discourse structure in-
tegration (Basic Model+Context+Discourse). The
performance of this model always falls in between
+Context and +Discourse individually, but with the
worst efficiency measured by model size and speed.

5 Conclusion and Future Work

In this paper, we present a neural topic segmenta-
tion model with injection of above-sentence dis-
course dependency structures inferred from a state-
of-the-art discourse dependency parser. Different
from previously proposed methods, our segmenter
leverages the discourse signal by encoding the top-
ical consistency between sentences from a more
global and interpretable point of view. Experiments
on multiple settings (intra-domain, domain transfer
and efficiency comparison) show that our system
achieves comparable performance to one of the cur-
rent top-performing topic segmenters, with much



less model size increase and speed degradation.
In the near future, we plan to investigate the

synergy between topic segmentation and discourse
parsing more comprehensively, by incorporating
the type of inter-sentential rhetorical relations and
analyzing whether and how this discourse knowl-
edge can enhance supervised topic segmentation
frameworks. In the long run, we intend to explore
the possibility for discourse parsing to benefit seg-
ment topic labeling, which is another important
task usually coupled together with topic segmen-
tation to provide the coarse-grained structural in-
formation for documents. Particularly, we believe
discourse parsing can potentially enhance the step
of key phrase extraction in segment topic labeling
due to the significant improvement it brings to the
related task of name entity recognition (NER) (Jie
and Lu, 2019).
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