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Abstract. Video topic segmentation unveils the coarse-grained seman-
tic structure underlying videos and is essential for other video under-
standing tasks. Given the recent surge in multi-modal, relying solely
on a single modality is arguably insufficient. On the other hand, prior
solutions for similar tasks like video scene/shot segmentation cater to
short videos with clear visual shifts but falter for long videos with subtle
changes, such as livestreams. In this paper, we introduce a multi-modal
video topic segmenter that utilizes both video transcripts and frames,
bolstered by a cross-modal attention mechanism. Furthermore, we pro-
pose a dual-contrastive learning framework adhering to the unsuper-
vised domain adaptation paradigm, enhancing our model’s adaptability
to longer, more semantically complex videos. Experiments on short and
long video corpora demonstrate that our proposed solution, significantly
surpasses baseline methods in terms of both accuracy and transferability,
in both intra- and cross-domain settings.

Keywords: Topic Segmentation · Video Understanding · NLP

1 Introduction

Video Topic Segmentation aims to break stretches of videos into smaller segments
consisting of video frames or clips consistently addressing a common topic. As
an example given in Figure 1, video topic segmentation does the job of segment-
ing a creative livestream video (e.g., from livestream platform Behance3) into
a sequence of topical-coherent pieces (Seg1 – Seg8), placing a boundary where
a topic transition happens. This task can enhances both human-to-human and
human-to-system interactions in modern social contexts, improving real-time
engagement on live streaming platform [9]. In particular, the relatively coarse-
grained temporal structure of the input video produced by video topic segmen-
tation is shown to not only simplify video comprehension and helps viewers find
content of interest easily. More importantly, it can substantially benefit other key
⋆ Work done while the first author was an intern at Adobe Research.
3 https://www.behance.net/live
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Fig. 1: A Behance exemplar about making a choking victim poster. The left side of
the figure illustrates the video’s timeline after topic segmentation. The right side shows
the transcript with words indicating a segment’s topic highlighed.

video understanding tasks such as video summarization [28], and query-driven
video localization [37].

Early computational models for video segmentation primarily targeted shot
or scene detection by merely leveraging surface visual features like spatiotempo-
ral aspects or frame colors [32,31,30,6]. These approaches typically measure the
temporal similarity along a video’s timeline to predict shot/scene boundaries.
Despite the difference in definition from shot/scene segmentation (discussed in
§2), the task of video topic segmentation focuses more on topic-related semantics
in the video, which is not necessarily aligned with visual changes. As shown in
Figure 1, the visual background remains similar in Seg3 – Seg7 for a considerable
time, even though the streaming topic changes drastically. Moreover, prior video
segmentation methods mostly focused on short videos with clear visual changes
and simple patterns [13,18,16]. These distinctive features of short videos could be
emphasized in model design or learned in supervised setups, making such mod-
els less adaptable to longer, more nuanced video content, like documentaries or
instructional livestreams.

To address the aforementioned issues, in this paper, we first propose a sim-
ple yet effective multi-modal model for video topic segmentation, which can take
both the aligned video transcript and visual frames as input. This ability consid-
erably enhances the model’s performance, as textual and visual features can work
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together to more comprehensively reflect the input video’s topic-related seman-
tics [17,2]. Similar to the formulation used for text topic segmentation [21,39,24],
we treat video topic segmentation as a sequence labeling task and introduce a
neural model equipped with a cross-modal attention mechanism going beyond
simple fusion to effectively integrate textual and visual signals in a complemen-
tary manner. We initially conduct intra-domain experiments by training and
testing our proposed segmenter on a newly collected YouTube corpus equipped
with high-quality human labeling. Empirical results show that our multi-modal
approach outperforms a set of baseline video segmenters by a substantial margin.

To further adapt our proposed model trained on YouTube videos to longer
videos with complex visuals and semantics, we propose an unsupervised do-
main adaptation strategy empowered by the sliding window inference and dual-
contrastive learning scheme. Further experiments on two out-of-domain long
video corpora demonstrate that the model’s generality can be significantly im-
proved through applying our dual-contrastive adaptation approach.

2 Related Work
Topic Segmentation seeks to uncover the semantic structure of a document
(either monologue [39] or dialogue [38]) by dividing it, typically a sequence of
sentences, into topical-coherent segments. Recently, a number of supervised neu-
ral solutions have been introduced owing to the availability of large-scale labeled
corpora sampled from Wikipedia [21], with section marks as gold segment bound-
aries. Most of these neural segmentation approaches follow the same strategy to
simply interpret text segmentation as a sequence labeling problem and further
tackle it using a variety of hierarchical neural sequence labelers [21,23,39,40].

Inspired by above-mentioned neural text segmenters, our paper similarly
frame video topic segmentation as a sequence labeling task due to the availabil-
ity of textual input (video transcript) and utilize a hierarchical neural sequence
labeling framework as the basic architecture of our proposal. Then we extend
such framework into the multi-modal setting, with the injection of visual signals
from video frames by adding a cross-modal attention network on top of it. More
details will be presented in §3.

Shot and Scene Segmentation are closely related to video topic segmentation
but more narrowly focused. A shot is a sequence of frames from a continuous
camera capture. Hence, most shot segmentation techniques mainly use the visual
modality to group video frames into shots. Conversely, a scene is more seman-
tically intricate than a shot, representing a series of related shots that depict
events defined by elements like actions, places, and characters. These elements
are mostly found in narrative videos such as movies. Thus, past scene segmenta-
tion techniques are primarily developed for movies exclusively, aiming to group
consecutive shots into scenes based on their visual consistency, spatiotemporal
features, or shot color similarity. Similar but more difficult than shot or scene seg-
mentation, our work focuses on video topic segmentation, which can be deemed
as an extension of text topic segmentation with "topic" defined as a relatively
self-contained collection of semantically close information. Notably, the topic’s



4 L. Xing et al.

definition relies heavily on the video’s context and domain, and isn’t strictly
bound to the concepts of shots or scenes as previously defined. From a ma-
chine learning perspective, the more dynamic nature of shot/scene segmentation
favours the visual signal, while in our task, the video topic segmentation relies
more heavily on the semantic signals carried by natural language [17,2]. There-
fore, our video topic segmenter is designed to extend from a topic segmentation
framework for text, by integrating visual frames as the auxiliary signal.

Contrastive Learning algorithms aim to learn data representations by en-
larging the distance between dissimilar samples and meanwhile minimizing the
distance between similar samples with contrastive loss functions [27]. These tech-
niques have been observed promising in domain adaptation for both uni-modal
and cross-modal settings [19,20,5]. Recent works on using contrastive learning
for video domain adaptation mainly focus on transferring models from source to
target domain, where both domains consist of short videos [20]. In contrast, our
work attempts to adapt the model trained on short videos to the low-resource
domain containing long videos with subtler visual changes, by utilizing the se-
mantic overlaps within a single modality or between two modalities to guide the
contrastive learning process.

3 Neural Video Topic Segmentation

3.1 Problem Definition

Inspired by recent neural-based supervised approaches for text topic segmenta-
tion for text, we similarly frame video topic segmentation as a sequence labeling
task, with sentences in the video transcript as the units for labeling. More pre-
cisely, given an input video with (1) the transcript as a sequence of timestamped
sentences, and (2) a sequence of timestamped video frames, our model will pre-
dict a binary label for each transcript sentence to indicate whether or not the
sentence indicates a topic segment boundary. Formally,

Given: A video v with its transcript Tv as a sequence of sentences {s1, s2, ..., sn}
along with start time offsets {b1, b2, ..., bn} / end time offsets {e1, e2, ..., en}, and
video frames Xv = {x1, x2, ... , xm}, as a single frame xi has timestamp ti.

Predict: A sequence of labels {l1, l2, ..., ln−1} for the sequence of transcript
sentences, where l is a binary label, 1 means the corresponding sentence overlaps
a video topic segment boundary, 0 otherwise. We do not predict the label for the
last sentence sn, as it is by definition equal to 1, i.e., the end of the last segment.

3.2 Model Architecture

Figure 2 illustrates the detailed framework of our proposed video topic seg-
menter, which is similar in architecture to TextSeg [21]. It comprises two hierar-
chically linked encoding layers: one as text encoder for contextualized encoding
within a sentence (orange in Figure 2) and the other for contextualized encod-
ing between sequence units (green in Figure 2). To allow both textual and visual
modalities contribute complementarily to the model’s prediction, we add a frame
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Fig. 2: Left: The overall architecture of our proposed multi-modal video topic segmen-
tation model, with four sub-modules (in §3.2) coded in different colors. Right: The
detailed illustration of cross-modal attention.

encoder module (blue in Figure 2) and a cross-modal attention mechanism (red
in Figure 2). This design choice extends the framework to the multi-modal set-
ting, accepting now both the video transcript and frames as input and making
prediction of topic segment boundaries based on them.

The text encoder module Et yields low-level features for sentences in the
video transcript. Different from the proposal in [21] using the BiLSTM + at-
tention as the backbone for text encoder, here we adopt the pre-trained vanilla
BERT [7] in accordance to its achieved superiority on text segmentation ob-
served in [39] and [26]. Parallel to the text encoder, a frame encoder Ef is
introduced to extract features for visual signals with the standard pretrained
ResNet-18 [14]. Formally, given a transcript sentence si with its time interval as
[bi, ei] and a set of video frames Xi = {xi

1, ..., x
i
m} associated with this sentence,

where each frame (e.g., the kth frame) in the set has timestamp tik ∈ [bi, ei], we
can obtain the sentence representation tri = Et(si) and its corresponding set of
frame representations FRi = {fri1, ..., frim}, where frik = Ef (x

i
k).

Next, we propose to use a cross-modal attention mechanism to produce
a text-aware visual representation for each sentence, rather than obtaining the
visual representation by naively operating mean-pooling over the set of frame
representations covered by the sentence interval. This design is motivated by the
observation that transcript sentences and video frames are in an one-to-many
relation, and frames sharing more semantics with the text should be given more
attention weights for visual representation generation. Irrelevant frames sharing
no or little semantics with the text may negatively affect the quality of the fused
multi-modal representation passed to the subsequent module [36]. In practice,
the cross-modal attention module adopts the standard scaled dot-product atten-
tion function proposed in [35]. With the transcript sentence representation tri
and its corresponding frame representation set FRi = {fri1, ..., frim} as query
and key (value), we compute the text-aware visual representation vri as:
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vri = AiVi, (1)

Ai = softmax(
qiK

T
i√

dk
) (2)

where qi ∈ R1×dk , Ki ∈ Rm×dk , and Vi ∈ Rm×dk denote the query vector,
key and value matrices generated by passing the sentence representation and
frame representations through three parallel feedfoward layers, namely Q-FFN,
K-FFN and V-FFN respectively. More formally, we have qi = Q-FFN (tri), Ki =
K-FFN (FRi), Vi = V-FFN (FRi), where K-FFN and V-FNN share the same
parameters and thus produce identical key and value matrices following [25,22].

Then all the obtained text-aware visual representations {vr1, ..., vrn} are con-
catenated with their corresponding sentence representations {tr1, ..., trn} and
fed into a BiLSTM layer which performs contextualization and returns hidden
states. Next, a multilayer perceptron (MLP) followed by Softmax serves as a
topic boundary predictor to make binary predictions regarding the input hidden
states according to a threshold τ tuned on the validation set. More specifically, if
a transcript sentence’s output probability exceeds τ , it’s marked as 1, indicating
a segment boundary. The entire model is fine-tuned using cross-entropy loss.

We train and test this model on a newly collected YouTube corpus (in §5.1)
and empirically verify its in-domain effectiveness (reported in Table 2). We lever-
age it as the source model in the next section to help deliver the domain adap-
tation strategy coupled with our proposed multi-modal framework.

4 Long Video Adaptation

The rise of (live-)streaming platforms has increased the demand for topical seg-
mentation of videos on these platforms. Unlike videos (e.g., on YouTube) with
careful pre-editing and segment labeling provided by their creators, videos on
(live-)streaming platforms (e.g., BBC documentaries and creative livestreams
on Behance) are usually extremely long, with sparse visual changes, and more
importantly, time-consuming to obtain segment annotations. Thus, it is imprac-
tical to learn a fully-supervised model on such videos, and the segmentation
model described in §3.2 (source model) trained on short YouTube videos (source
domain) might underperform when applied to these extensively long videos (tar-
get domain). To adapt the source model for the above-described target domain,
we propose to equip it with two strategies, namely Sliding Window Inference
(§4.1) and Dual-Contrastive Adaptation (§4.2).

4.1 Simple Sliding Window Inference

Due to the length discrepancy between videos from the source and target do-
mains, directly applying the source model to the target input taking the full tran-
script sentence sequence as input is observed to cause extremely sparse bound-
ary predictions [12]. Therefore, we propose to calibrate the input length by first
breaking the long target input into snippets by a sliding window with the size
consistent with the source input length (i.e., the average length of the YouTube
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videos). After applying the source model on every snippet and aggregating out-
puts of all snippets, we eventually make binary prediction for each sentence if its
aggregated probability exceeds the threshold τ pre-tuned on the source domain.
Formally, given a long video input from the target domain with length = n and a
fixed window size = k (n ≫ k), we can create n−k+1 snippets {S1, ...,Sn−k+1}
where each snippet consists of k consecutive sentences by sliding the window
over the input with the stride of 1. As a result, each transcript sentence sm can
be covered by up to k snippets. Once we apply the source model to all snippets,
we can obtain multiple probability predictions for sm. We then aggregate these
probability predictions associated with sm by taking average:

p̄m =
1

k

k∑
i=1

pSim (3)

Finally, we predict that sm falls on a segment boundary if p̄m > τ .

4.2 Dual-Contrastive Adaptation

To transfer the pre-trained source model to the target domain while still pre-
serving its performance on the source domain, we follow a more sophisticated
unsupervised domain adaptation paradigm, which leverages both labeled source
data and unlabeled target data. Specifically, we fix the frame and text encoder
(Et and Ef ) while updating the rest of the model in two steps, where the first
step updates the model on unlabeled target data using two contrastive learning
objectives namely intra-modal contrastive loss and cross-modal contrastive loss,
while the second step updates the model on source data with the supervised
training scheme described in §3.2.

As the overview of the first step shown in Figure 3, given a collection of the
paired sentence representations and their corresponding frame representation
sets {tri,FRi}bi=1 in a training batch (size=b) produced by the text and frame
encoder from the target domain, we need two distinct projection heads to map
these sentence/frame representations into a shared space. Here we use Q-FFN
and K-FNN (which shares parameters with V-FNN ) in the cross-modal atten-
tion to serve as projection heads for textual and visual modality respectively.
Thus we have:

qi = Q-FFN(tri),Ki = K-FFN(FRi) (4)

where qi and Ki = {ki1, ..., kim} denote the projected sentence embedding and the
set of projected frame embeddings covered by the sentence. As frames covered
by the same sentence are more likely to share similar semantics, we pull the
frames attached to the same sentence closer and push the ones from different
sentences far apart, by minimizing the intra-modal contrastive loss for visual
modality defined as:

lintra = −
b∑

i=1

log
exp(k̃i · k̃i)/τ∑b
j=1 exp(k̃

i · k̃j)/τ
(5)

where k̃i∈R FRi and τ is the hyper-parameter of temperature. To learn the
semantic relation between modalities in the target domain, we first obtain the
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visual representation matched with a sentence by averaging all frames covered
by the sentence, and then bring semantically close sentence-visual pairs together
and push away non-related pairs by minimizing the cross-modal contrastive loss:

lcross = −
b∑

i=1

log
exp(qi · MP(Ki))/τ∑b
j=1 exp(qi · MP(Kj))/τ

(6)

where MP denotes Mean-Pooling. The total dual-contrastive loss is formed as:

l = lintra + lcross (7)

The above dual-contrastive learning phase is followed by the second step. In this
step, the model is further trained on the labeled source data again to leverage
the target-domain signals learned by the parameters in cross-modal attention for
boundary prediction. This step ensures the model adapted to the target domain
still preserves some level of effectiveness when applied to the source domain.

Fig. 3: An illustration of updating
cross-modal attention module with
dual-contrastive adaptation.

Dataset YouTube BBC Behance
# of Vids. 5,422 11 575
# of Tokens/Vid. 1,411 2,868 11,554
# of Sents./Vid. 108 216 1,287
# of Segs./Vid. 6.7 29.1 5.2
# of Tokens/Seg. 209 99 2,229
# of Sents./Seg. 16 8 248
# of Frames/Sec. 10 4 4
Avg. Length 0:09:30 0:45:02 2:07:51

Table 1: Statistics of corpora used for
training and evaluation in §5.

5 Experimental Setup

To evaluate the effectiveness and generality of our proposed video topic seg-
mentation model (in §3) and long video adaptation strategy (in §4), we conduct
experiments on two different settings, namely Intra-Domain Segment Infer-
ence and Cross-Domain Segment Inference .

5.1 Intra-Domain Dataset – YouTube

For intra-domain segment inference, we train and test models with the data
from the same domain (corpus). Due to the lack of large-scale human-annotated
dataset in the field of video segmentation, we collect a novel corpus consisting of
5,422 user-generated videos randomly sampled from YouTube. During the video
collecting process, we applied filtering criteria to eliminate unsuitable samples to
ensure the quality of the dataset to construct. These criteria include constraints
on video length (> 100s), word count (> 0.5 word/second on average), chapter
durations (all chapters with length > 10s), and sentence length (all sentences
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with length < 60 tokens) inspired by [4]. Each video in this corpus is associ-
ated with a series of user-defined chapter timestamps indicating the beginning
of each topic chapter contained in this video. We thereby use these available
chapter beginning timestamps as ground-truth topic segment boundaries since
a topic chapter is by definition a main thematic division within a video. The
video transcripts are generated by YouTube ASR with token-level offsets and we
further exploit a top performing punctuation restoration model [1] to boost the
quality of transcript sentence segmentation. Compared with other existing video
understanding corpora such as BBC [2] (for scene segmentation, size = 11) and
TVSum [33] (for video summarization, size = 50), our constructed YouTube
corpus is (1) larger in size; (2) covering more diverse topics; (3) with reliable
segmentation which has already been specified by video creators. We split this
corpus into train/dev/test portions with size: 5148/134/140.

5.2 Datasets for Cross-Domain Inference

To evaluate our proposal’s robustness in cases where a domain-shift is present, we
conduct experiments for cross-domain segment inference, in which our proposed
supervised segmenter is initially trained on the YouTube video corpus, and tested
on two corpora with videos significantly longer than YouTube videos:
BBC Planet Earth [2] consists of 11 episodes from the BBC educational TV
series Planet Earth. Topic segment boundaries of the dataset have been manually
annotated by human experts and transcript sentences are obtained using Whis-
per4 [29]. As the statistics in Table 1 indicates, this dataset has longer videos
with more segments than YouTube videos, while each segment covers much fewer
sentences and tokens. We split this dataset into 5 and 6 for validation and testing.
Behance Livestream consists of 575 videos sampled from the creative livestream
platform Behance. Livestreams, in general, are very challenging to segment into
coherent sections, since they contain mixes of multi-user dialogues, with visual
features that change little over the video. They are also very long, with hours of
content in each video. Behance livestreams, in particular, contain another layer
of challenge, since they are highly specialized in creative tasks such as animation
and image edit with unknown entities and intricate visual operations. We believe
finding structures in such noisy environment would be not only a good bench-
mark for future topic segmentation research, but also of great practical value
for consumers, who would find it hard to navigate contents in a back-and-forth
conversation. Thus, we collect such a corpus and annotate its videos with topic
segments given the help from domain experts in animation and image edits. For
each video, we pay $23.16 for human annotators to watch and create segments
based on the video content. The total cost to annotate 575 videos is $13,317. We
split this dataset into validation and test sets with 57 (10%), 518 (90%).

5.3 Baselines
We consider the following representative baselines as comparisons:

4 https://openai.com/research/whisper

https://openai.com/research/whisper
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- Random: Given a video with its transcript consisting of k sentences, we first
randomly sample the segment number b ∈ {0, ..., k − 1} for this video, and then
determine if a sentence overlaps a segment boundary with probability b

k .
- BayesSeg [8] originally proposed for text segmentation by predicting segment
boundaries through modeling the lexical cohesion in a Bayesian context.
- GraphSeg [11] generates a semantic relatedness graph with sentences as nodes.
Segments are then predicted as the maximal cliques in graph.
- Cross-BERT [26] is a supervised text topic segmenter representing candidate
segment boundaries using their left and right contexts encoded with BERT. The
model is trained on YouTube and applied to longer BBC and Behance videos.
- TransNet [34]: This model adopts stacked Dilated DCNN blocks as its basic
framework and targets video segmentation on shot level. Here we use its publicly
available version trained on synthesized video corpora off-the-shelf.
- LGSS [30] is a multi-modal movie scene segmenter pre-trained on the limited-
scale MovieScenes corpus. We use its public version with visual frames as input.
- X-Tiling is our extension of TextTiling [15]. While TextTiling only allows tex-
tual embeddings as input, X-Tiling accepts both textual and visual embeddings
and their concatenations as input to compute semantic coherence and then make
segment boundary predictions for videos. For fair comparison, the input textual
and visual embeddings are produced by pre-trained BERT and mean-pooling
over ResNet-18 respectively.

All hyper-parameters required by the above baselines are tuned on the vali-
dation portion of the datasets included in this paper.

5.4 Evaluation Metrics

We apply three standard metrics in previous literature to evaluate the perfor-
mances of our proposal and baselines. They are:
- F1, with higher scores denoting better performance. It measures the exact
match between ground truth and model’s prediction.
- Pr error score [10], which fixes the inadequacies of Pk [3] and WindowDiff [?],
previously considered as two standard evaluation metrics for text segmentation.
Concretely, Pr is the mean of missing and false alarm probabilities, calculated
based on the overlap between ground-truth segments and model’s predictions
within a certain size sliding window. Since it is a penalty metric, lower score
indicates better performance.
- mIoU score [41], shortened from the mean Intersection-over-Union. It is cal-
culated by taking average over maximal IoUs of all ground-truth segments to
predicted segments. Higher score indicates better performance.

5.5 Implementation Details

In our multi-modal video topic segmenter, we employ the [CLS] token represen-
tation from bert-base-uncased (dimension d = 768) for sentence representa-
tion and ResNet-18’s avg-pooling layer output (dimension d = 512) for frame
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Method Modalities Pr ↓ F1 ↑ mIoU ↑
Random – 45.84 48.98 37.76
X-Tiling Text 39.94 51.56 50.97
BayesSeg Text 40.70 50.24 49.69
GraphSeg Text 38.12 51.41 51.73
Cross-BERT∗ Text 32.89 60.48 60.00
X-Tiling Visual 37.53 52.08 53.24
TransNet Visual 40.14 51.01 50.66
LGSS Visual 39.77 50.87 51.13
X-Tiling Text + Visual 38.78 52.30 51.45

NeuralSeg∗

(Ours)

Text 31.91 63.23 61.36
Visual 50.18 47.59 16.15

Text + Visual 30.61 65.29 63.11

Table 2: Results on YouTube for intra-domain evaluation. Bold results indicate the
best performance across all comparisons. Underlined results indicate the best perfor-
mance within their own sub-section. * indicates a fully supervised setting.

representation. The cross-modal attention’s feedforward layers have an output
dimension of 768. Our BiLSTM has 2 layers with a hidden size of 256. For
YouTube training, we use the Adam optimizer with a learning rate of 1e−3 and
a batch size of 16. In the long video adaptation with dual-contrastive learning,
the SGD optimizer is applied with a mini-batch size of 256, learning rate of 3e−2,
and softmax temperature of 1e−1. Training spans 10 epochs for both supervised
learning and domain adaptation, with results averaged over 3 runs. The seg-
mentation threshold, τ , is tuned on validation sets for both intra-domain and
cross-domain evaluations.

6 Results and Discussion

Intra-Domain Segment Inference: Table 2 reports the performance of the
chosen baselines and our proposal (NeuralSeg in the table) on the YouTube
testing set, while NeuralSeg is trained on the YouTube training set with different
input modality settings. Notably, our model significantly outperforms the best
baseline, Cross-BERT, even when only using video transcripts (text) as input.
But on the other hand, if we train the model by using only video frames (visual)
as input, the model’s performance is even considerably worse than the random
baseline, possibly because that too diverse visual and topic presence in the corpus
makes it difficult for the model to learn a meaningful visual input-to-prediction
projection. Yet, by combining both modalities with cross-modal attention fusion,
the model’s performance can be further enhanced compared with only textual
modality. These results confirm that the visual information itself may not be
sufficient to capture a video’s topic-related semantics under a supervised setting,
but fusing it together with the textual information can provide a more clear
picture of the video’s underlying topics.

Cross-Domain Segment Inference: Table 3 compares the performance of the
baselines and our proposed segmenter pre-trained on YouTube w/ or w/o ap-
plying our long video adaptation strategy to two challenging long video corpora.
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Method Modalities BBC Behance
Pr ↓ F1 ↑ mIoU ↑ Pr ↓ F1 ↑ mIoU ↑

Random – 48.29 47.36 30.66 46.27 50.00 36.24
X-Tiling [15] Text 41.59 50.72 33.27 45.93 49.95 43.16
BayesSeg [8] Text 42.01 51.01 33.79 49.01 48.16 37.55
GraphSeg [11] Text 45.11 49.28 30.23 46.76 50.12 40.38
Cross-BERT [26] Text 44.63 49.70 31.51 46.15 49.88 41.02
X-Tiling [15] Visual 44.48 49.89 33.26 44.56 50.73 41.81
TransNet [34] Visual 42.54 49.82 31.12 46.34 49.88 40.54
LGSS [30] Visual 42.88 50.02 32.66 45.67 50.12 39.90
X-Tiling [15] Text + Visual 43.22 50.44 32.68 45.87 50.01 41.72
Ours (Plain) Text + Visual 43.14 54.13 31.23 45.71 51.25 34.33
Ours (Window) Text + Visual 40.66 54.92 37.50 43.03 51.83 47.66
Ours (Window + CL-Cross) Text + Visual 36.45† 54.91 50.92† 42.72 51.68 48.65†

Ours (Window + CL-Intra) Text + Visual 37.14† 55.10 49.22† 42.56 51.84 48.39
Ours (Window + CL-Dual) Text + Visual 36.01† 55.75 51.56† 42.25† 51.91 49.35†

Table 3: Results on BBC and Behance corpora for cross-domain evaluation. Bolded
and underlined results indicate the best performance across all comparisons and within
their own section. † indicates results applied contrastive domain adaptation which are
significantly different (p < 0.05) from Ours (Window).

To better investigate the effectiveness of the two contrastive objectives associ-
ated with long video adaptation, Table 3 also shows the results by adding each
objective (CL-Cross/CL-Intra) individually. The primary takeaway is that our
long video adaptation strategy (Window + CL-Dual) significantly and consis-
tently improves the performance achieved by the segmenter initially trained on
short YouTube videos (Plain). In more detail, we can observe that utilizing the
sliding window inference strategy (Plain → Window) already yields noticeable
performance gains on both corpora. Furthermore, adding contrastive learning
objectives can further boost accuracy on two long video corpora. The greatest
enhancement is seen when the model is tuned with dual-contrastive losses.

7 Conclusion and Future Work

We present a multi-modal video topic segmentation model accepting both video
transcripts and frames as input. Further, we propose a novel unsupervised do-
main adaptation strategy empowered by a dual-contrastive learning framework
to generalize our model pre-trained on short videos to longer videos with more
complex content and subtler visual changes. Experiments on two settings (intra-
domain and cross-domain segment inference) show that (1) our system achieves
the SOTA performance on a newly collected YouTube corpus consisting of large-
scale but short videos; (2) When we apply our long video adaption strategy, the
model for short videos achieves better performance when transferred to two do-
mains comprising long (live-)stream videos.

References

1. Alam, T., Khan, A., Alam, F.: Punctuation restoration using transformer models
for high-and low-resource languages. In: Proceedings of the Sixth Workshop on
Noisy User-generated Text (W-NUT 2020). pp. 132–142 (2020)



Multi-Modal Video Topic Segmentation 13

2. Baraldi, L., Grana, C., Cucchiara, R.: A deep siamese network for scene detection
in broadcast videos. In: Proceedings of ACM MM 2015. pp. 1199–1202 (2015)

3. Beeferman, D., Berger, A., Lafferty, J.: Statistical models for text segmentation.
Machine Learning 34(1), 177–210 (1999)

4. Cao, X., Chen, Z., Le, C., Meng, L.: Multi-modal video chapter generation. ArXiv
abs/2209.12694 (2022)

5. Chen, D., Wang, D., Darrell, T., Ebrahimi, S.: Contrastive test-time adaptation.
In: Proceedings of CVPR 2022. pp. 295–305 (2022)

6. Chen, S., Nie, X., Fan, D.D., Zhang, D., Bhat, V., Hamid, R.: Shot contrastive
self-supervised learning for scene boundary detection. In: Proceedings of CVPR
2021. pp. 9791–9800 (2021)

7. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: Pre-training of deep
bidirectional transformers for language understanding. In: Proceedings of NAACL
2019. pp. 4171–4186. Association for Computational Linguistics (2019)

8. Eisenstein, J., Barzilay, R.: Bayesian unsupervised topic segmentation. In: Pro-
ceedings of EMNLP 2008. pp. 334–343 (2008)

9. Fraser, C., Kim, J., Shin, H., Brandt, J., Dontcheva, M.: Temporal segmentation
of creative live streams. In: Proceedings of CHI 2020. pp. 1–12 (2020)

10. Georgescul, M., Clark, A., Armstrong, S.: An analysis of quantitative aspects in
the evaluation of thematic segmentation algorithms. In: Proceedings of SIGdial
2006. pp. 144–151 (2006)

11. Glavaš, G., Nanni, F., Ponzetto, S.P.: Unsupervised text segmentation using se-
mantic relatedness graphs. In: Proceedings of the Fifth Joint Conference on Lexical
and Computational Semantics. pp. 125–130 (2016)

12. Glavas, G., Somasundaran, S.: Two-level transformer and auxiliary coherence mod-
eling for improved text segmentation. In: Proceeding of AAAI-20. pp. 2306–2315
(2020)

13. Gygli, M., Grabner, H., Riemenschneider, H., Van Gool, L.: Creating summaries
from user videos. In: Proceedings of ECCV 2014. pp. 505–520 (2014)

14. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: Proceedings of CVPR 2016. pp. 770–778 (2016)

15. Hearst, M.A.: Text tiling: Segmenting text into multi-paragraph subtopic passages.
Computational Linguistics 23(1), 33–64 (1997)

16. Jadon, S., Jasim, M.: Unsupervised video summarization framework using
keyframe extraction and video skimming. In: Proceedings of ICCCA 2020. pp.
140–145 (2020)

17. James, N., Todorov, K., Hudelot, C.: Combining visual and textual modalities for
multimedia ontology matching. In: Semantic Multimedia. pp. 95–110 (2011)

18. Jayaraman, D., Grauman, K.: Slow and steady feature analysis: Higher order tem-
poral coherence in video. In: Proceeding of CVPR 2016. pp. 3852–3861 (2016)

19. Kang, G., Jiang, L., Yang, Y., Hauptmann, A.G.: Contrastive adaptation network
for unsupervised domain adaptation. In: Proceedings of CVPR 2019. pp. 4893–4902
(2019)

20. Kim, D., Tsai, Y.H., Zhuang, B., Yu, X., Sclaroff, S., Saenko, K., Chandraker,
M.: Learning cross-modal contrastive features for video domain adaptation. In:
Proceedings of ICCV 2021. pp. 13598–13607 (2021)

21. Koshorek, O., Cohen, A., Mor, N., Rotman, M., Berant, J.: Text segmentation as
a supervised learning task. In: Proceedings of NAACL 2018. pp. 469–473 (2018)

22. Kumar, A., Mittal, T., Manocha, D.: MCQA: multimodal co-attention based net-
work for question answering. CoRR abs/2004.12238 (2020)



14 L. Xing et al.

23. Li, J., Sun, A., Joty, S.: Segbot: A generic neural text segmentation model with
pointer network. In: Proceedings of IJCAI-18. pp. 4166–4172 (2018)

24. Lo, K., Jin, Y., Tan, W., Liu, M., Du, L., Buntine, W.: Transformer over pre-
trained transformer for neural text segmentation with enhanced topic coherence.
In: EMNLP 2021 (Findings). pp. 3334–3340 (2021)

25. Lu, J., Yang, J., Batra, D., Parikh, D.: Hierarchical question-image co-attention for
visual question answering. In: Proceedings of NeurIPS 2016. pp. 289–297 (2016)

26. Lukasik, M., Dadachev, B., Papineni, K., Simões, G.: Text segmentation by cross
segment attention. In: Proceedings of EMNLP 2020. pp. 4707–4716 (2020)

27. van den Oord, A., Li, Y., Vinyals, O.: Representation learning with contrastive
predictive coding. ArXiv abs/1807.03748 (2018)

28. Qiu, J., Zhu, J., Xu, M., Dernoncourt, F., Bui, T., Wang, Z., Li, B., Zhao, D.,
Jin, H.: Semantics-consistent cross-domain summarization via optimal transport
alignment. ArXiv abs/2210.04722 (2022)

29. Radford, A., Kim, J.W., Xu, T., Brockman, G., McLeavey, C., Sutskever, I.: Ro-
bust speech recognition via large-scale weak supervision. ArXiv abs/2212.04356
(2022)

30. Rao, A., Xu, L., Xiong, Y., Xu, G., Huang, Q., Zhou, B., Lin, D.: A local-to-global
approach to multi-modal movie scene segmentation. In: Proceedings of CVPR 2020.
pp. 10146–10155 (2020)

31. Rasheed, Z., Shah, M.: Scene detection in hollywood movies and tv shows. In:
Proceedings of CVPR 2003. pp. II–343 (2003)

32. Rui, Y., Huang, T.S., Mehrotra, S.: Exploring video structure beyond the shots.
In: Proceedings of the IEEE International Conference on Multimedia Computing
and Systems. pp. 237–240 (1998)

33. Song, Y., Vallmitjana, J., Stent, A., Jaimes, A.: Tvsum: Summarizing web videos
using titles. In: Proceeding of CVPR 2015. pp. 5179–5187 (2015)

34. Souček, T., Lokoč, J.: Transnet v2: An effective deep network architecture for fast
shot transition detection. ArXiv abs/2008.04838 (2020)

35. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser,
L.u., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information
Processing Systems. vol. 30 (2017)

36. Wang, Z., Zhong, Y., Miao, Y., Ma, L., Specia, L.: Contrastive video-language
learning with fine-grained frame sampling. In: Proceedings of AACL-IJCNLP 2022.
pp. 694–705 (2022)

37. Xiao, S., Chen, L., Zhang, S., Ji, W., Shao, J., Ye, L., Xiao, J.: Boundary pro-
posal network for two-stage natural language video localization. In: Proceedings of
AAAI-21 (2021)

38. Xing, L., Carenini, G.: Improving unsupervised dialogue topic segmentation with
utterance-pair coherence scoring. In: Proceedings of SIGdial 2021. pp. 167–177
(2021)

39. Xing, L., Hackinen, B., Carenini, G., Trebbi, F.: Improving context modeling in
neural topic segmentation. In: Proceedings of AACL-IJCNLP 2020. pp. 626–636
(2020)

40. Xing, L., Huber, P., Carenini, G.: Improving topic segmentation by injecting dis-
course dependencies. In: Proceedings of the 3rd Workshop on Computational Ap-
proaches to Discourse. pp. 7–18 (2022)

41. Zhu, W., Pang, B., Thapliyal, A.V., Wang, W.Y., Soricut, R.: End-to-end dense
video captioning as sequence generation. In: Proceedings of COLING 2022. pp.
5651–5665 (2022)


	Multi-Modal Video Topic Segmentation with Dual-Contrastive Domain Adaptation

